百年机械,名家论坛-9月5日德国锡根大学张传增教授学术报告
报告题目:Crack propagation simulation by the phase field method
主讲人:张传增教授
时间:2019年9月5日上午9:00 - 10:00
地点:威廉希尔316报告厅
主讲人简介:张传增教授(Prof. Chuanzeng Zhang),欧洲科学院院士,欧洲科学与艺术院院士,欧洲人文与自然科学院院士。1977年考入同济大学,1978至1980年在同济大学建材系读书,1980至1983年在德国达姆斯塔特工业大学攻读硕士学位,1983至1986年在该校攻读博士学位,1986至1988年在美国西北大学做博士后研究工作。1988至1989年在上海同济大学工程力学系任副教授,1990年起任教授。1993年获得德国达姆斯塔特工业大学特许任教资格学位,1995至2004年在德国齐陶/格里茨应用技术大学土木系任教授,2004年10月至今任德国锡根大学土木系结构力学教席C4教授。2008至2016年10月任世界华人计算力学协会副主席,2014年2月至2015年8月任德国锡根大学土木系副系主任,2015年9月至2017年9月任系主任。张传增教授为英国威塞克斯技术学院客座研究员,同济大学兼职教授,哈尔滨工业大学客座教授,哈尔滨工程大学客座教授,南京航空航天大学客座教授,中国建材研究总院客座教授,西北工业大学顾问教授,北京交通大学名誉教授,青岛大学名誉教授,国务院侨务办公室专家咨询委员会委员。
张传增教授主要从事的科研领域包括智能材料与结构力学、功能梯度材料与结构力学、弹性动力学、断裂动力学、计算力学等。张传增教授及其研究小组近年来取得了大量的科研成果,已在学术期刊和专业会议论文集发表学术论文800余篇,完成科研报告50余篇,近五年来曾应邀做学术报告50余次,参与组织了30多个国际学术会议,并先后为近60余家国际权威学术杂志做书面评审工作。张传增教授为一国际期刊和一系列丛书的副主编及10余家国际期刊的编委,截止到2019年8月20日,其学术论文Google Scholar的引用量为10141次,H指数为52,i10指数为254。
报告摘要:Numerical simulation of the crack propagation problems in engineering materials and structures is still a challenging and difficult task in fracture mechanics and computational mechanics. Though the finite element method (FEM) is well established and widely applied in engineering sciences, it exhibits certain essential disadvantages in the numerical simulation of the crack propagation problems. The FEM requires an adequate fracture criterion to determine the crack propagation direction and velocity. Since it deals with a moving boundary value problem, the FEM demands also a cumbersome and sophisticated re-meshing technique to track the moving crack-tip. Moreover, it is rather difficult to consider the crack initiation and crack branching in the classical FEM. To overcome these difficulties, the phase field model has been proposed in recent years. In the phase field model, a “sharp” discontinuous crack is approximated by a “smeared” crack, which is described by a continuous crack phase field. The phase field method has some essential advantages in the numerical simulation of the crack propagation problems. It requires no fracture criteria and can automatically consider the crack initiation, propagation and branching phenomena. In addition, a re-meshing is generally not needed in the phase field fracture model.
In this presentation, the key idea, theoretical background and some numerical aspects of the phase field method for the numerical simulation of the crack propagation problems in brittle elastic materials and structures will be described. The essential advantages and disadvantages of the phase field method in comparison with other numerical methods will be demonstrated and discussed by using several 2D and 3D numerical examples. Some critical issues and future research needs related to the phase field fracture model will be also addressed and highlighted.